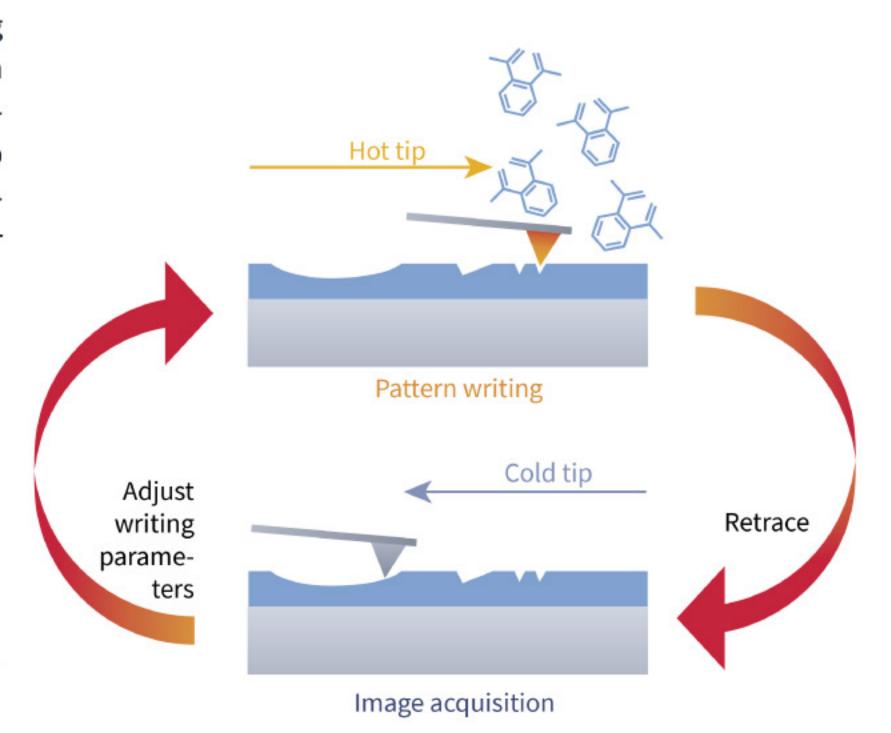


NanoFrazor® Explore

REVOLUTIONIZING NANOFABRICATION



NanoFrazor® Explore

THE FIRST HYBRID MIX&MATCH NANO- AND MICROLITHOGRAPHY TOOL

The NanoFrazor® Explore takes nanofabrication to a new level. The NanoFrazor technology has been commercially available since 2014, and its unique capabilities have already enabled many revolutionary nanotechnology devices and discoveries.

NanoFrazor lithography systems are based on thermal scanning probe lithography. Core of the NanoFrazor® technology is an ultra-sharp heatable probe tip which is used for writing and simultaneous inspection of complex nanostructures. The heated tip creates arbitrary, high-resolution nanostructures by local sublimation of resists. Standard pattern transfer methods like lift-off or etching can be applied.

Patented "Closed-Loop Lithography" ensures high patterning accuracy

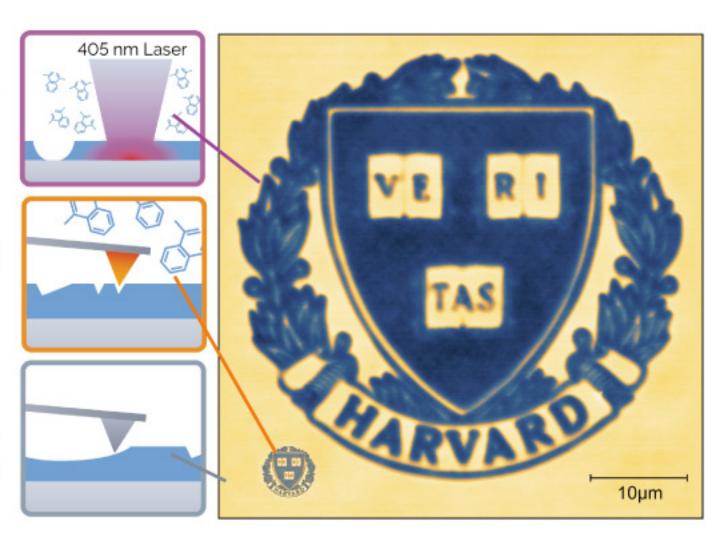
PPA - THE MAIN RESIST FOR NANOFRAZOR TECHNOLOGY

- Polyphthalaldehyde (PPA) decomposes and sublimates PPA is commercially available worldwide without redeposition upon heating by tip or laser
- PPA is suitable for many pattern transfer processes (lift-off, etching, molding, ...). We provide support and an extensive recipe book.
- Contact us for info on other resists and transfer processes

HYBRID MIX & MATCH DIRECT WRITE LITHOGRAPHY

Since 2019, the NanoFrazor® Explore is also equipped with a laser writer module. The increased write speed at micrometer resolution makes the Explore the first real alternative to expensive and complex direct-write nanolithography methods.

Laser writing

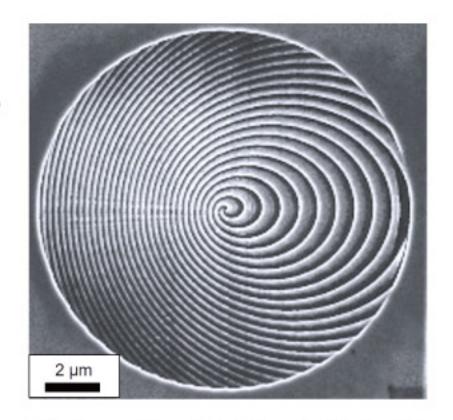

Fast direct resist sublimation for large-area patterning, e.g. contact wires and pads

Thermal probe writing

High precision and high resolution for the critical parts of the nanodevice

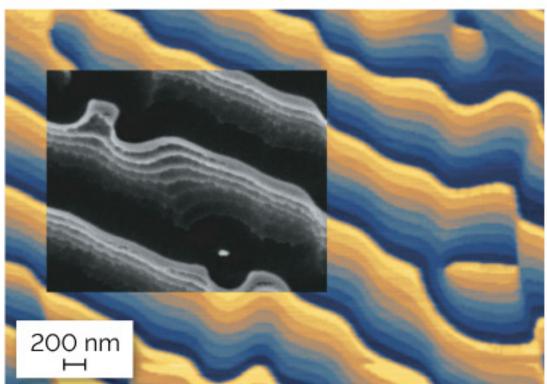
Metrology, inspection and alignment

In-situ high-speed imaging with the same tip before, during or after patterning. No wet development required as the PPA resist is removed directly.



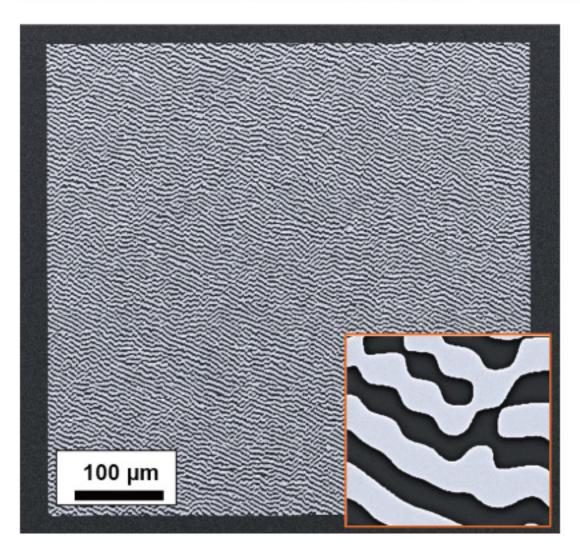
Harvard micro- and nano-logos written 30 nm deep into PPA resist and imaged by NanoFrazor®

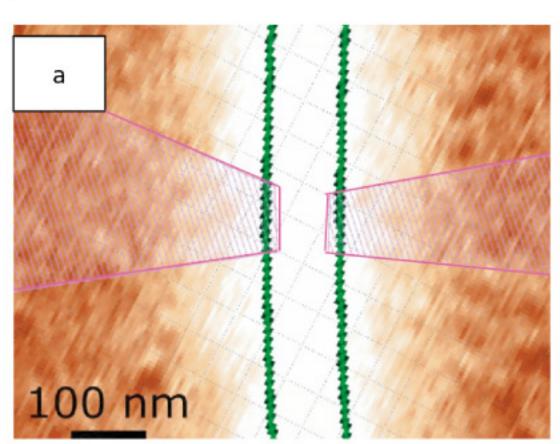
Courtesy of Harvard CNS

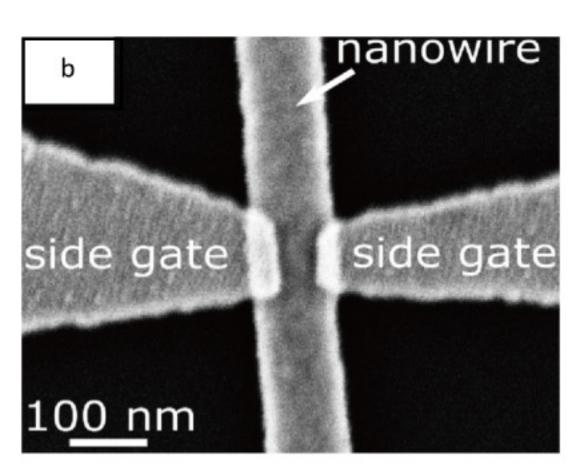

3D GRAYSCALE NANOLITHOGRAPHY

- Patterning depth can be set for each position of the tip (grayscale value of each pixel)
- Closed-Loop Lithography enables unprecendeted accuracy (< 1 nm error demonstrated for more than 16 individual depth levels)

3D phase plate etched from PPA into SiN membranes for TEM optics


Courtesy of EPFL and KIT

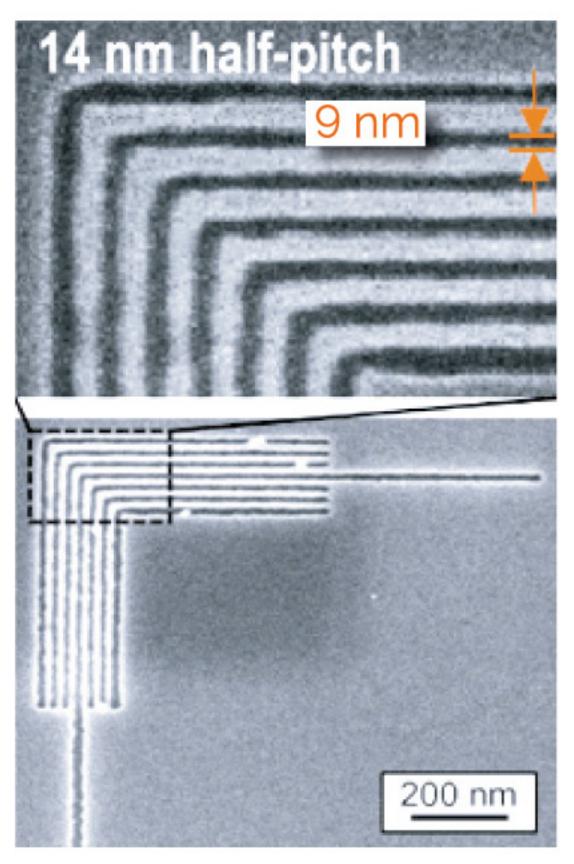


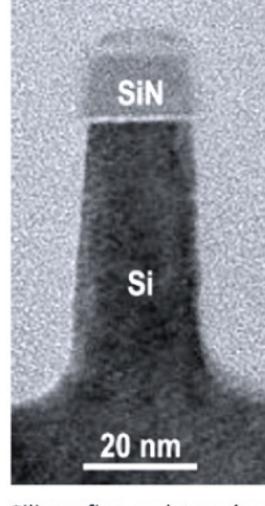

hologram written into PPA and Multilevel simultaneously imaged. Inset is an SEM image after 10x-amplification etch transfer in Si

Courtesy of Sun Yat-Sen University

MARKERLESS OVERLAY & STITCHING

Markerless overlay of metal electrodes on top of a nanowire buried under resist stack. a) Detect nanowire location (green) and draw layout on topography image (pink). b) SEM after lift-off.


Reflective hologram (made with Au lift-off) consisting of 100 000 000 pixels and stitched from 50 µm write fields using a topography correlation technique.


- Accurate overlay and stitching achieved by in-situ topography imaging (sub-10 nm accuracy demonstrated)
- Features buried under resist (flakes, wires, etc) are used as natural markers
- Automated correlation stitching of write fields

resist)

tions required

ULTRA-HIGH RESOLUTION

Silicon fins and trenches etched from PPA resist.

OTHER UNIQUE **CAPABILITIES**

- Ultra-sharp tips enable ultra- Low damage: No charged high resolution (< 10 nm particles beam, hence better device performance with half-pitch demonstrated in sensitive materials
- No proximity effect correc- · Material conversion at the nanoscale: direct heat-induced modifications (phase change, chemical reaction, ...) of various materials

Courtesy of IBM Research and imec

NanoFrazor® Explore

SYSTEM SPECIFICATIONS

		Thermal Probe Writing	Direct Laser Sublimation
Patterning performance			
Minimum structure size [nm]		15	600
Minimum lines and spaces [half pitch, nm]		25	1000
Grayscale / 3D-resolution (step size in PPA) [nm]		2	-
Writing field size [X μm x Y μm]		60 x60	60 x 60
Field stitching accuracy (markerless, using in-situ imaging) [nm]		25	600
Overlay accuracy (markerless, using in-situ imaging) [nm]		25	600
Write speed (typical scan speed) [mm/s]		1	5
Write speed (50 nm pixel) [μm²/min]		1000	100000
Topography imaging performan	nce		
Lateral imaging resolution (feature size) [nm]		10	
Vertical resolution (topography sensitivity) [nm]		<0.5	
Imaging speed (@ 50 nm resolution) [μm²/min]		1000	
System features			
Substrate sizes	1 x 1 mm ² to 100 x 100 mm ² (150 x 150 mm ² possible with limitations) Thickness: 10 mm with optical access, 15 mm without optical access.		
Optical microscope	0.6 μm digital resolution, 2 μm diffraction limit, 1.0 mm x 1.0 mm field of view, autofocus		
Laser source and optics	405 nm wavelength CW fiber laser, more than 110 mW output power on sample, 1.2 μm mi ni mum focal spot size		
Real-time laser autofocus	Using the distance sensor of the NanoFrazor cantilever		
Magnetic cantilever holder	Fast (< 1 min) and accurate tip exchange		
Housing	Three-layer acoustic isolation, superior vibration isolation (> 98%@10 Hz) PC-controlled temperature and humidity monitoring, gas-flow regulation		
Software features	GDS and bitmap import, 0.1 nm address grid, 256 grayscale levels, topography image analysis and drawing for overlay, mix & match between tip and laser writing, fully automated calibration routines, Python scripting		
NanoFrazor cantilever features			
Integrated components	Tip heater, topography sensor, electrostatic actuation		
Tip geometry	Conical tip with < 10 nm radius and 750 nm length		
Tip heater temperature range	25 °C – 1100 °C (< 1 K setpoint resolution)		
System dimensions & installation	on requirements		
Height × width × depth	185 cm x 78 cm x 128 cm		
Weight	650 kg		
Power input	1 x 110 or 220 V AC, 10 A		
Gas input	Compressed air and/or nitrogen with > 4 bar		
Other considerations			
Recipe book with detailed descript	ions of various processes is available (regularly updated v	with software).	

Cantilever tips degrade over time (> 50 h patterning possible). Exchange is fast and low cost for tool owners.

A cleanroom or special laboratory is not required. No vacuum needed.

Parallel Multi-tip patterning extension (optional add-on for Explore system) is scheduled for beta-testing at end of 2022

Please note: Specifications depend on individual process conditions and may very according to equipment configuration. Write speed depends on exposure area. Design and specifications are subject to change without prior notice.

聯絡人: 江俊葳 先生 / Wesley 聯絡電話: 0910 792 940 Email: wesley@stella.com.tw

聯絡人: 邱重鎧 先生 / CK 聯絡電話: 0908 785 626 Email: ckchiu@stella.com.tw

Tel: 02 2528 9668 Fax: 02 8772 7711

